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by 
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SUMMARY 

The electrostatic instability arising due to a tangential 
discontinuit? of velocity in two semi- infinite, homogeneous 
regions of a cold and collisionless plasma subject to a uni­
form magnetic field is investigated by use of two fluid equa­
tions. A general dispersion relation is derived allowing for 
interstreaming of charged particles in each region in addi­
tion to a slippage of one region over the other. Special 
cases a r e  then discussed and the cr i ter ia  for stability, 
monotonic instability and growing wave instability a r e  
derived . 
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VOLUME AND SURFACE INSTABILITY 
IN  SLIDING PLASMAS 

by 
S. P. Talwar* 

Goddard Space Flight Center 

INTRODUCTION 

Plasmas characterized by relative tangential motion between various layers  are a common 
occurrence in many astrophysical situations, e.g., solar-wind magnetospheric boundary and 
coronal s t reamers  moving through the solar wind. This had led some workers (References 1, 2, 
3, and 4 )  to investigate, in recent years, the instability which a r i ses  due to a tangential discontin­
uity in velocities in hydromagnetic plasmas. These investigations made use of the collision-
dominated single fluid hydromagnetic equations, although in a recent investigation (Reference 5) 
the corresponding problem for a plasma of weak collisions characterized by an anisotropic 
plasma pressure is worked out using the Chew, Goldberger, and Low equations (Reference 6).  

Quite often (e.g., in enhanced emission of charged particles at the time of a solar flare) situa­
tions arise where a plasma, carrying a net volume current,  penetrates another plasma thus leading 
to a configuration where one expects to find the joint effect of two-stream instability and Kelvin-
Helmholtz instability. In the present paper we intend to investigate the instability of such a plasma 
configuration while neglecting the effects of finite temperature and collisions. 

EQUATIONS OF THE PROBLEM 

Consider two semi-infinite, homogeneous, electrically neutral plasmas slipping past one another 
at the common interface z = 0. Each plasma is regarded as cold and collisionless and subject to 
a uniform magnetic field parallel to the interface. The particles in each plasma region (z < 0 and 
z > 0)are assumed to move parallel to each other in the initial state and at constant speeds, U ,  and 
u , ~ ,respectively along the x -direction. Here j stands for either electrons o r  ions. The electrons 
and ions may move together in each plasma in which case there will be no initial current flowing 
in either plasma, and the configuration of sliding plasmas will correspond to the classical Kelvin-
Helmholtz problem as applied to ionized gases. The electrons and ions may, however, be taken to 
move at different speeds (but each spatially constant) in each plasma region. In this case there 
will be present a contra-streaming of charged particles in the body of each plasma in addition to a 
tangential discontinuity of velocities for each charged species at the interface between the two 
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plasmas. Here, the mean electric current is not zero in the initial state, and one should expect a 
simultaneous presence of both the contrastreaming instability (the volume instability) and the Kelvin 
instability (the surface instability). We shall neglect the self magnetic field arising due to the in­
itial current as compared to the prevailing magnetic field of external origin. The prevailing mag­
netic field may, in general, be inclined at a certain non-zero angle (but still parallel to the inter­
face) to the direction (x-axis) of f ree  streaming of charged particles in the initial state. If the 
magnetic field is assumed along the direction of f ree  streaming there will be no initial electric 
field in either medium. On the other hand, if  the prevailing magnetic field is, in particular, taken 
normal to the free  streaming, then each plasma region will be characterized by an initial constant 
electric field in a direction normal to  both the streaming motion and the magnetic field, i.e., nor­
mal to the interface (the z-direction). In case the ions and the electrons a r e  not moving together 
in such a configuration, we may reconcile this by arguing that electrons (streaming through sta­

+ 

tionary ions) acquire a steady drift velocity in the crossed E and fields and that the ions do not 
partake in this motion. Such a situation may a r i s e  in various physical situations (e.g., in the ion­
osphere in the form of the "electrojet" where a strong Hall current flows perpendicular to the 
earth 's  magnetic field, and in PIG type discharges (Reference 7) in the laboratory). 

To investigate the stability of the above mentioned configuration, we will  develop the perturba­
tion equations, for the initial state which is defined as follows: 

-
voj  = [ U O j ,  0 ,  03 

po = constant 

Po = 0 J 
For a zero temperature plasma, in which collisions a r e  disregarded, the two fluid perturbation 
equations a r e  written as, 
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and 

Here iij and n j  denote, respectively the perturbation in velocity at a point and the number density 
3 

of the j t h  class  of particles (electron and ion). The quantities b, and? denote the perturbation in 
the magnetic field and current density at a point, stands for the electric field at a point in the 
medium, and the equilibrium quantities are shown with a suffix ‘ 0 ’  . For simplicity we shall, in 
what follows, res t r ic t  our discussion to electrostatic perturbations only so that we may regard the 
perturbation in magnetic field to be zero. Thus the last t e rm in Equation 2 vanishes and Equa­
tion 6 is written as, 

so  that 

By coupling Equations 7 and 9, we get 

If we assume the components of perturbation to vary with X ,  : T ,  Z ,  and t as (some function of Z )  

. exp i (k, x t k y  y - h t ) ,  we can rewrite Equations 2 and 3 as 

and 

-
( - i w t  ik . 

3 

where RJ stands for the Larmor  frequency e j  a m j  c for the charged particles (electrons, -e 

and ions, +e),  and has components njxand R j  which correspond, respectively, to the magnetic field 
components, B,, and B , , ~  in x- and y-directions. 
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Using Equation 11we rewrite the perturbation equation for the electric potential, 4 ,  as 

c i;j 

- + - I  = 0 .  (13)(-iu + i k  * Uoj )  

We now have to evaluate an expression for  a * Z j  in t e rms  of $ to be substituted in the above equa­
tion so as to obtain the final equation in a single perturbation quantity $. 

Taking the divergence and the curl  of Equation 12, and simplifying we obtain 

Eliminating ? .  G j  f rom Equations 13 and 14 we obtain 

where w denotes the plasma frequency b N O  e , /mj) l”  for the j t h  C l a s s  of particles. 
’ j  

With the spatial dependence of perturbations envisaged, we may rewrite Equation 15 as ,  

where D stands for a / a z .  

The above equation with U o j  = 0 and D 2  = -k I gives the results for electrostatic plasma oscil­
latibns in a homogeneous static plasma subject to a uniform magnetic field. In particular it leads 
to the following well-known results.  

(1.2 = Wpz (Longitudinal propagation) 

and 

(Transverse propagation) . (17) 
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Again, we may deduce from Equation 16 the results of two-stream instability for a homogeneous 
plasma carrying a uniform magnetic field along the direction of streaming, (Reference 8) and 
transverse to the direction of streaming (Reference 9) by taking coj f 0 and D = 0. 

BOUNDARY CONDITIONS AND DISPERSION RELATION 

For a configuration of two plasmas sliding past each other Equation 16 holds for both plasma 
regions (z $ 0 )  with respective values for the physical parameters  involved in the equation. The 
respective solutions of Equation 16, bounded at z = SJ,for the two plasma regions z < 0 and z > 0 

are written as, 

and 

where m l  and m 2  are chosen so as to  have positive real parts,  and are given by 

k Z  1-= s wp j  i 

We need to satisfy appropriate boundary conditions at the common interface between the two 
plasmas. The conditions are: 

(1) Equation 8 gives the boundary condition that $ should be continuous across  the interface. 
This yields 

A = B .  

(2) Equation 13, when integrated across  the interface, yields the condition 



The expression for u j  can be derived f rom Equation 12 written in component form. After some 
simplifications we obtain, 

Substituting Equation 22 into Equation 21 and making use of Equations 18 and 20 we obtain 

Here m 1  and m 2  are given by Equation 19 with necessary suffixes. Equation 23, with values for 
m l  and m 2  substituted from Equation 19, constitutes the dispersion relation determining the stability 
of the configuration under investigation. It is rather unwieldy for discussion in the general case, 
and we shall therefore discuss some special cases  taking the propagation vector < parallel to the 
streaming motion. For a propagation vector transverse to the direction of streaming, the config­
uration is equivalent to a static state and is thus stable in the absence of any discontinuity in mag­
netic field and plasma density at the interface. 

FIELD-FREE SLIDING PLASMAS 

If both plasma regions (z 20 )  are devoid of any magnetic fields, m l  and m, are each equal to Tc‘ 
and the dispersion relation, Equation 23, reduces to 

where m and M ,  respectively, stand for electron and ion masses,  and^, and N, are the particle 
densities in the two regions. In Equation 24 we have considered the propagation vector 2 along the 
direction of streaming (namely the x-axis). For simplicity we may further restrict ourselves to 
a single homogeneous plasma(N, = N ~ )  wherein the ions are at rest and the electrons s t ream past 
them with equal and opposite speeds in the two semi-infinite regions z < 0 and z > 0 .  Thus, with 
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u I i  = u , ~= 0 and u,, = -uze = u, , Equation 24 reduces to 

This is a cubic equation in wZ which does not possess any negative real root for W’ leading to mono­
tonic instability in case the inequality k 2  u t  > up2 is satisfied. Equation 24 may be compared with 
the corresponding formula for the two-stream instability in a homogeneous current-carrying 
plasma in the absence of any magnetic field. Measuring W ,  k u, in units of w we may rewrite the 

p e

Equation 25 as 

where 

It may be noted that our Equation 26 differs in the last t e r m  on the left hand side from the conven­
tional formula for two-stream instability in a homogeneous plasma devoid of any relative slippage 
between its two haives. The function, F, ( x ,  y),  and the corresponding function, F ( x ,  Y )  without the 
last te rm 2xy/ (x2  - y 2 ) ’ ,  are plotted in Figures 1 and 2 for y = 0.5 and 1.5 respectively. The curve 
F, ( x .  y ) ,  symmetric in X ,  is a lways  l e s s  negative than the curve F ( x ,  y ) .  For y 1, the plot of both 
functions F and F, demonstrates that all roots (four for F and s ix  for F,,) a r e  real ,  leading to stable 
oscillatory modes. For y < 1, on the other hand, the function F corresponds to an overstable situa­
tion (instability through growing waves) whereas the function F, leads to a monotonically unstable 
situation corresponding to  W’ a negative real quantity. Let us  now assume that the ions and the 
electrons move together so  that there is no initial current in either plasma region. In this case, 
the dispersion relation, Equation 24, reduces to, 

where 

There is no contrastreaming of particles in the body of either plasma, and the only discon­
tinuity in motion is present at the interface. Equation 28 for w 

p i  
w 
p 2  

and U ,  = -u, = u, 
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I . jure I-Plot of the functions F, (x, y )  and F(x, y )  versus x for y = 0.5. 
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Figure 2-Plot of the functions F, (x, y )  and F(x, y )  versus x for y = 1.50. 

yields, 

This formula is identical to the one obtained by Barston (Reference 10) and shows that a tangential 
discontinuity in a field-free homogeneous plasma is stable or unstable monotonically depending on 
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whether the relative speed 2u0 is more or less than the critical value defined by 

It may be noted that the classical Kelvin-Helmholtz instability in hydrodynamics is recovered 
in the limit wP -a. Further, the Equation 28 shows that there is no possibility of growing wave 
instability in the configuration. In Figure 3 we have shown in curve a, the dependence of the root 

w2/w; (corresponding to negative sign in Equation 28) on the parameter kU,,/w 
pe' 

For a given 
tangential speed the wave numbers of perturbation lying between the range 0 and k, (Equation 30) 
are monotonically unstable, there  being a mode of maximum instability for an intermediate wave 
number defined by 

with maximum growth rate  given by 

SLIDING PLASMAS WITH A UNIFORM FIELD ALONG STREAMING 

If we suppose that the prevailing magnetic field is parallel to both the direction of streaming 
of particles in both plasma regions z 0 and the propagation vector k', then the te rms  involving 
(k' x ti, ) disappear in Equation 22. The disper­- sion relation, Equation 23, is thus written as, 

Substituting for m l  and m 2  from Equation 18 we 
obtain the dispersion relation as, 

'-0.5 I I I I 1 
0 0.5 1 .O 1 .5 2.0 2.5 : 0 

kUo/upe 

Figure 3-Plot of the dependence of the root C U ~ / O  
pe(from Equation 36) on the parameter kUo/wp . Curve a, 

"./up = 0; curve b,Qe/wp, = 0.5; curve c , f / w  = 1.0; 
and d r v e  d, ne/ w  = 2.0. p. 

p e  
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where 

w l j  = w - k U I j  

and 

2 i  = - kUzJ 

Electron Oscillations in a Single Plasma 

For convenience in handling the dispersion Equation 34 we may restr ic t  our discussion to the 
case of electron oscillations alone and thus regard the ions to be unperturbed due to their heavy 
mass.  In this case the summations in Equation 34 disappear and we get a simplified dispersion 
relation for a homogeneous plasma with a uniform magnetic field, so  that the two halves of the 
plasma slide past each other along the field lines. This is written as, 

Here we have again taken U, = -U, = U, and cancelled a non-zero factor, (mb, -a:,) , in the deriva­
tion of Equation 36. 

Equation 36 suggests that the configuration envisaged here does not show any overstability 
(growing wave instability corresponding to (c? a complex quantity) in case the inequality 0: < 2 k 2  u,” 
is satisfied. The configuration is then stable o r  monotonically unstable depending on whether the 
inequality 

o r  (37)i
J 

is satisfied. The configuration will be overstable only i f  ne> w and the relative velocity satisfies 
p e

the inequality 
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The dependence of one root, W* (in units of u,’ ), likely to show instability on ku, (measured in 
units of up ) is exhibited in Figure 3 for = 0.5, 1.0 and 2.0 (curves b ,  c ,  and d respectively). 
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Curve a represents the case of zero magnetic field. Clearly the configuration with field is unstable 
monotonically for a range of relative speeds, given by the following expressions, in case the elec­
tron Larmor frequency is l e s s  than the plasma frequency. 

and (39) 

The configuration is thus stable outside this range of relative speeds. The range of unstable rela­
tive speeds shrinks to zero as the electron Larmor frequency approaches the plasma frequency. 
Thereafter the configuration is either stable or exhibits overstability for low enough relative 
speeds. For  0, 2~ , for example, the configuration is overstable up to ku, 0 . 6  w and stable 

p e  p e 


beyond. 

Thus we conclude by saying that the effect of magnetic field along the streaming direction is 
stabilizing in that the range of unstable tangential speeds is narrowed and the growth rate for any 
unstable wavelength is suppressed, till beyond a critical value of magnetic field (corresponding to 
ne = w ) the instability appears in the form of overstability for low tangential speeds only. For  

p e  


infinitely large magnetic fields, therefore, the configuration is unstable through overstability. The 
existence of instability for infinitely large magnetic fields w a s  established earlier by Harrison 
and Stringer (Reference 11). Their analysis, however, did not apply to finite values of magnetic 
fields. 

Both Ions and Electrons Perturbed 

The assumption that only electrons a r e  perturbed and not the ions is justified in case the dop­
pler shifted frequencies, w1 and w 2 ,  for either region are much larger  than the ion cyclotron fre­
quency. In general, ions also contribute and the general dispersion relation, Equation 33 is a 16th 
degree polynomial in W ,  the parameter deciding the question of stability of the configuration. TO 
reduce the degree of the dispersion relation when both ions and electrons a r e  perturbed we may 
consider the following special situations. 
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No initial electric current in uniform plasma 

If the ions and electrons are taken to move together along the magnetic field lines, the disper­
sion relation fo r  the propagation vector along the streaming direction is written as, 

Here we have taken the doppler-shifted frequencies (w- kU,) and (w t kU,) for the two plasma regions 
to be very much less than the electron cyclotron frequency, ne.  Thus, we find that in the approxima­
tion mentioned above, the configuration of slow relative slippage in a uniform current free plasma 
is stable in the presence of a uniform magnetic field, along the streaming motion, and for all tan­
gential speeds except for a narrow range of tangential speeds lying between the values correspond­
ing to the positive and negative signs before the square root t e r m  in the following expression. 

It may be noted that there is no growing wave instability possible in this approximation. 

Uniform plasina carrying an initial current 

Let us now suppose that in the two halves of a single plasma permeated with a homogeneous 
magnetic field, the electrons s t ream past the stationary ions with equal and opposite speed along 
the direction of the prevailing magnetic field. In this  case the dispersion formula, Equation 34, 
for the case of slow relative velocities reduces to, 

J 

t &j4  - 2w2 k 2  u t  t G ,  ) t [k4u: t (nz - 2 k 2  u:b p e  p e  

This is a cubic in w 2  and so must possess at least  one real root, which for monotonic instability is 
required to be negative. A necessary condition for monotonic instability to a r i se  is that the elec­
tron plasma frequency exceeds the electron Larmor frequency. In that case the configuration is 
unstable monotonically for a small  range of relative speeds given by the expression 
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It may be noted that in the case of electrons streaming through stationary ions, the monotoni­
cally unstable range of relative speeds (obtained f rom Equation 43) is very much less than the un­
stable range of speeds when ions are regarded as unperturbed (Equation 39). 

The Equation 42 reduces to a quadratic equation in u2 for frequencies much l e s s  than the ion 
Larmor frequency and in this limit we conclude that the configuration is monotonically unstable for 
relative speeds in the range defined by Equation 43 and is unstable through overstability i f  the fol­
lowing inequality holds 

Clearly a necessary condition for growing wave instability to occur for low relative speeds is that 
the electron plasma frequency is l e s s  than the electron Larmor frequency. Thus, the configura­
tion is monotonically unstable, though only for a narrow range of tangential speeds, if  (LI > ne; and 

p e 


overstable for low enough tangential speeds if < a,. 

In Figure 4 we have shown the variation of one root (the l e s s  positive) of the quadratic equa­
tion in (2,as obtained by neglecting w 2  in comparison to in the t e rm involving w in Equation

p i
42,with the parameter kU, for a few values of a,. The curves a ,  b ,  c a r e  respectively for 
ac/upe= 0.5, 1, and 2. In the last value the configuration is overstable for relative speeds below 
a critical value cdefined by k u ,  0 .6  w . 

pe 


SLIDING PLASMAS WITH TRANSVERSE 
MAGNETIC FIELD 

In case the two plasma regions (Z 2 0) a r e  
assumed to carry a uniform magnetic field 
transverse to the direction of streaming in each 
region and the propagation vector G ,  and m l  and 
m 2  (Equation 19) a r e  each equal to k and the 
dispersion relation, Equation 23, is thus written 
as 

W *  
Pi 1 

* - c ( W - k U l j )  pi,+ ( w - k U l j ) ]  

-3.5 


-3.0 


-2.5 


0.5 1 .O 1 .5 2.0 2.5 3.0 

kUo/wPe 

Figure 4-Plot of the dependence of the root m2/cd  
p e

(from Equation 42) on the parameter kUo/Wpe. Curve 0 ,  

j?- = . (45) n,,/~, = 0.5; curve h,n,,/~.. = 1.0; and curve c, 
e(W-kUZj)  [nj2 - ( w - k ~ z j ) ]  ne/wpe = 2.0. 
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For electron oscillations alone in a single plasma it further reduces to a quadratic in u2, given by 

Here we have taken U ,  = -u, = u,. 

It follows from the Equation 46 that the electron oscillations, in a uniform plasma with its two 
halves slipping past each other in a transverse uniform magnetic field, do not lead to growing wave 
instability. They do, however, show monotonic increase in amplitude in case the following condi­
tions a r e  simultaneously met with, i.e., 

and 

so  that the configuration is stable for all electron densities in case ku, <ne, 

Alternatively, we could argue that the electron oscillations lead to a monotonic instability 
only for wave numbers of perturbation greater than a certain critical value given by the expression, 

If one incorporates mutual streaming of particles also, leading to an initial electric current 
in each region, the dispersion relation, Equation 45, complicated for the general case, reduces to 
a cubic in w2 for the case of electrons streaming through stationary ions in a single plasma with 
equal and opposite speeds in the two regions z < 0. This is written as, 

- w z  ( w 2 + k 2 U , , - k U O ” , )  0 . 
(49)p e  


This equation gives the following condition for monotonic instability in the medium. 
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A comparison of the two equations, 48 and 50, shows that the critical wave number beyond which 
the configuration is unstable monotonically, is somewhat greater when perturbed motions of both 
electrons and ions are taken into account in a current carrying plasma than without it. 
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